Final report

2022 Greenhouse gas (GHG) accounting report

XOJET Aviation

Reporting Period 01/01/2022 to 31/12/2022

October 2023

Details

Prepared for:

XOJET Aviation LLC

6th floor, 1901 W Cypress Creek Rd, Fort Lauderdale, FL 33309, United States

Prepared by:

South Pole Carbon Asset Management Ltd. (South Pole)

Technoparkstrasse 1 8005 Zurich Switzerland southpole.com

Contact person:

Agnieszka Kwolek Business Development Manager a.kwolek@southpole.com

Disclaimer:

This report is solely for the use of Vista Global Holding Limited. No part of it may be circulated, quoted, or reproduced for distribution to third parties without prior written approval from **South Pole Carbon Asset Management Ltd**.

Table of contents

Details	2
Table of contents	3
List of tables	4
List of figures	4
Acronyms and abbreviations	5
Executive summary	5
Introduction	8
Methodology	8
System Boundaries	9
Scope 1	10
Scope 2	10
Scope 3	11
Data inventory and assumptions	13
Results	13
Overall results- Vista	15
Category-level results	16
Conclusions	20
Annex I	21
Emission factors sources	21
Annex II	22
Data assumptions and extrapolations	22

List of tables

Table 1: Summary of key performance indicators (KPIs)	6
Table 2: GHG emissions by scope and greenhouse gas	6
Table 3: Company information	8
Table 4: Applied global warming potentials (GWPs)	9
Table 5: Key figures for XOJET Aviation's sites	9
Table 6: Overview of scope 1 emission sources for 2022	10
Table 7: Overview of scope 2 emission sources for 2022	11
Table 8: Overview of scope 3 emission sources for 2022	11
Table 9: Key figures according to the Global Reporting Initiative (GRI)	13
Table 10: GHG emissions by scope and activity for 2022	14
Table 11: Emission factors sources	20
Table 12: Data assumptions and extrapolations	21

List of figures

Figure 1: XOJET Aviation's 2022 GHG emissions by scope	7
Figure 2: X0JET Aviation's 2022 GHG emissions by GHG Protocol category	7
Figure 3: Vista overall 2022 GHG emissions by business entity	16
Figure 4: X0JET Aviation's 2022 GHG emissions by scope	17
Figure 5: X0JET Aviation's 2022 GHG emissions by GHG Protocol category	17
Figure 6: A comparison of XOJET Aviation's aviation fuel emissions and all other emissions	18
Figure 7: X0JET Aviation's GHG emissions for 2021 and 2022 by scope	19
Figure 8: X0Jet's emissions from aviation fuel from 2021-2022	19

Acronyms and abbreviations

CH_4	Methane
CO ₂	Carbon dioxide
CO ₂ e	Carbon dioxide equivalent
GHG	Greenhouse gases
HFCs	Hydrofluorocarbons
kg	Kilogram
MWh	Megawatt hour
N ₂ 0	Nitrous oxide
t	tonne
UNFCCC	United Nations Framework Convention on Climate Change
US	United States
WFH	Work-From-Home
GJ	Gigajoules
CEDA	Comprehensive Environmental Data Archive
BEIS	UK Department for Business, Energy & Industrial Strategy

Executive summary

This report presents the inventory of XOJET Aviation's operational greenhouse gas (GHG) emissions for the 2022 calendar year, based on its reported data.

An operational control approach was taken for this accounting exercise, meaning emissions for all activities conducted under the control of XOJET Aviation were calculated, using a combination of primary and extrapolated data.

A breakdown of emissions and relevant analysis is provided in this report for key sources of emissions, as per the categorisation specified in the GHG Protocol. All assumptions, data challenges, extrapolations, and limitations are described within this report and its annexes.

Based on the data provided by XOJET Aviation, the total GHG emissions reported for the year 2022 are estimated to be **212,009.41** tonnes of carbon dioxide equivalent (tCO_2e). This represents a 10.92% decrease in emissions from 2021. Scope 1 emissions from the combustion of aviation fuel are the largest contributor to the footprint, accounting for 154,888.26 tCO_2e , 73.08% of total emissions. Combined, scope 1 emissions from the combustion of aviation fuel, and upstream scope 3 category 3 fuel and energy related activities emissions from the combustion of aviation fuel, accounted for a combined 91.7% of the total 2022 footprint.

Key performance indicators (KPIs) are found in Table 1, and an overview of GHG emissions by source is provided in Table 2, and Figures 1 and 2. The emissions intensity of XOJET Aviation has decreased from 1,300.60 tCO₂e per employee in 2021 to 1,254.29 tCO₂e per employee in 2022, but increased from 61.93 tCO_2 e per m2 in 2021 to 147.93 tCO₂e per m2 in 2022.

Please note that, due to rounding of numbers, the figures in the tables in this report may not add up exactly to the totals provided.

Number of employees	169	tCO2e/employee	1254.49
Total area (m2)	1,433	tCO₂e/ m2	147.93

Table 1: Summary of key performance indicators (KPIs)

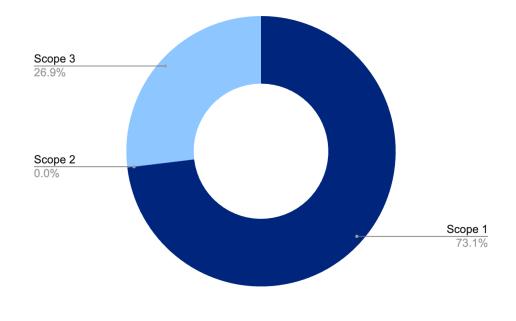
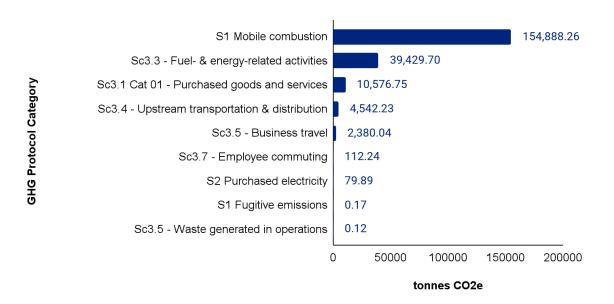

(Source: South Pole, based on XOJET Aviation, 2023)

Table 2: GHG emissions by scope and greenhouse gas

Scope	Total (tCO ₂ e)	Percentage of total (%)
Scope 1: direct GHG emissions	154,888.43	73.06%
Scope 2: indirect GHG emissions (market-based)	79.89	0.04%
Dual reporting Scope 2: indirect GHG emissions (location-based ¹)	79.89	-
Scope 3: other indirect GHG emissions	57,041.09	26.90%
Total GHG emissions (market-based)	212,009.41	100%


(Source: South Pole, based on XOJET Aviation, 2023)

As a residual mix emission factor in the US is not available, the same emission factor used for location-based estimation has been applied, in line with the GHG Protocol Scope 2 Guidance.

¹ A location-based method reflects the average emissions intensity of grids on which energy consumption occurs (using mostly grid-average emission factor data). A market-based method reflects emissions from electricity that companies have purposefully chosen (or their lack of choice): it derives emission factors from contractual instruments, which include any type of contract between two parties for the sale and purchase of energy bundled with attributes about the energy generation or for unbundled attribute claims (e.g. RECs, GOs, etc.).

Figure 2: XOJET Aviation's 2022 GHG emissions by GHG Protocol category (Source: South Pole, based on XOJET Aviation, 2023)

8

Introduction

Vista Global Holding Limited (Vista), the world's leading global private aviation group, has previously undertaken GHG inventories for 2019, 2020 and 2021. XOJET Aviation was included in the 2021 inventory. This report provides an account of the GHG emissions from XOJET Aviation's global operations from 1st January 2022 to the 31st December 2022, based on reported data by the client. It includes an analysis of key sources of emissions, as well as targeted recommendations focused on data improvement and decarbonisation.

Company information and the reporting period are presented in Table 3.

Company information	
Website	www.xojetaviation.com ²
Business function	Private aviation company
Reporting period	January 1 to December 31, 2022

(Source: South Pole, based on XOJET Aviation, 2023)

Methodology

The GHG accounting and reporting procedure is based on the 'The Greenhouse Gas Protocol: GHG Protocol: A Corporate Accounting and Reporting Standard - Revised Edition' (GHG Protocol) and the complementary 'Corporate Value Chain (Scope 3) Accounting and Reporting Standard' - the most widely used international accounting tools for government and business leaders to understand, quantify, and manage GHG emissions. The standards were developed in partnership between the World Resources Institute and the World Business Council for Sustainable Development.

All accounting is based on the principles of the 'GHG Protocol':

- Relevance: establishing an appropriate inventory boundary that reflects the GHG emissions of the company and serves the decision-making needs of users;
- Completeness: including all emission sources within the chosen inventory boundary. Any specific exclusion is disclosed and specified;
- Consistency: ensuring meaningful comparison of information over time and transparently documented changes to the data;
- Transparency: guaranteeing data inventory sufficiency and clarity, where relevant issues are addressed in a coherent manner; and
- Accuracy: minimising uncertainty and avoiding systematic over- or under-quantification of GHG emissions.

² XOJET Aviation is one of a number of operators now part of 'Vista America' (https://www.vistaamerica.com/) Confidential. Do not distribute. 9

Global warming potential (GWP)

Global warming potential (GWP) is a measure of the climate impact of a GHG compared to carbon dioxide over a time horizon. GHG emissions have different GWP values depending on their efficiency at absorbing longwave radiation, and the atmospheric lifetime of the gas. The GWP values used in GHG accounting include the six GHGs covered by the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol, as presented in Table 4. These are the GWP used by the United Kingdom Department for Business, Energy and Industrial Strategy (BEIS) and are based on the 'Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), unless otherwise stated.

Table 4: Applied global warming potentials (GWPs)

GHG	GWP (100 years)
Carbon dioxide (CO_2)	1
Methane(CH ₄)	28
Nitrous oxide (N_2 0)	265
Hydrofluorocarbons (HFCs)	See IPCC AR5
Perfluorocarbons (PFCs)	See IPCC AR5
Refrigerants	See IPCC AR5

(Source: IPCC AR5, 2014)

System Boundaries

Organisational boundaries

XOJET Aviation's GHG inventory follows the operational control approach, in accordance with the GHG Protocol. Under the operational control approach, a company accounts for 100% of emissions from operations over which it or one of its subsidiaries has operational control. This GHG inventory covers all activity from XOJET Aviation's global offices. It also includes activities carried out by third parties that partially conduct activities for XOJET Aviation.

Table 5 shows the countries and offices that were included in the 2022 GHG inventory.

Table 5: Key figures for XOJET Aviation's sites

Type of facility	Area (m²)	Headcount			
Office	1,433	169			
Total - 1,433 169					
		Office 1,433 - 1,433			

(Source: South Pole, based on XOJET Aviation, 2023)

Operational boundaries

Under the 'GHG Protocol', emissions are divided into direct and indirect emissions. Direct emissions are those originating from sources owned or controlled by the reporting entity. Indirect

emissions are generated as a result of the reporting entity's activities but occur at sources owned or controlled by another entity.

The direct and indirect emissions are divided into three scopes as found below.

Scope 1

Scope 1 emissions are all carbon emissions originating from sources that are directly managed by the organisation (direct GHG emissions). This includes the emissions from the combustion of fossil fuels in mobile and stationary sources (e.g. owned or controlled aircrafts, boilers, power generators and vehicles) and carbon emissions generated by chemical and physical processes, as well as fugitive emissions from the use of cooling and air-conditioning (AC) equipment. Table 6 (below) gives an overview of the emission sources considered in scope 1, based on the information provided by XOJET Aviation.

Category	Emission sources	Boundary and justification for exclusion
Stationary combustion	Generation of electricity and heat	Not applicable
Mobile combustion	Company-owned or leased vehicles	Included
Physical or chemical processing	Manufacture or processing of chemicals and materials	Not applicable
Fugitive emissions	Emissions from the use of cooling systems and AC equipment, leakage from CO ₂ tanks or methane tubes	Included

Table 6: Overview of scope 1 emission sources for 2022

Scope 2

Scope 2 includes indirect GHG emissions from the generation of purchased electricity, steam, heat or cooling purchased by the organisation from external energy providers.

As required by the GHG Protocol, Scope 2 emissions are reported using both the location-based method and the market-based method³. This dual reporting allows corporations to compare their individual purchasing decisions to the overall GHG-intensity of the grids on which they operate.

The market-based method reflects emissions that result from electricity purchases that the company has purposefully chosen. When a contract is set up for the sale of electricity and the origin of energy generation can be guaranteed, then those specific and relevant emissions factors can be applied. The location-based method applies average emission factors that correspond to

³ A location-based method reflects the average emissions intensity of grids on which energy consumption occurs (using mostly grid-average emission factor data). A market-based method reflects emissions from electricity that companies have purposefully chosen (or their lack of choice): it derives emission factors from contractual instruments, which include any type of contract between two parties for the sale and purchase of energy bundled with attributes about the energy generation for unbundled attribute claims (e.g. RECs, GOs, etc.).

the grid where consumption occurs. The default method applied to XOJET Aviation reporting is market-based; location-based results are shown for completeness and transparency.

Table 7 presents an overview of the emission sources considered in scope 2.

	Table 7: Overview	of scope 2	emission s	sources for 2022
--	-------------------	------------	------------	------------------

Category	Emission sources	Boundary
Electricity	Purchased electricity	Included
Steam	Purchased steam	Not applicable
District heating	Purchased heating	Not applicable
District cooling	Purchased district cooling	Not applicable

Scope 3

Scope 3 includes other indirect emissions, such as emissions from the extraction and production of purchased materials and services, vehicles not owned or controlled by the reporting entity, outsourced activities, or waste disposal.

According to the 'GHG Protocol', companies shall separately account for and report for emissions from Scope 1 and 2. Scope 3 is an optional reporting category according to the 'GHG Protocol', but as it is the most important scope for many organisations, companies are expected to assess at least the most relevant categories. In addition, it is best practice to include scope 3 emissions and it is a requirement for setting science-based targets (SBTs).

Table 8 presents an overview of the emission sources considered in Scope 3.

Category	Emission sources	Boundary
Purchased goods and services	Purchased goods (raw materials) and services Included	
Capital goods	Production of capital goods (information technology [IT] equipment, machinery, buildings etc.)	Not material. Not included
Fuel- and energy-related activities	Emissions from fuel and electricity generation, including transmission and distribution (T&D) losses	Included
Upstream transportation and distribution	Transportation and distribution of goods and services purchased by the reporting company	Included
Waste generated in operations	Waste management of operational waste (landfilling, recycling, etc.)	Included
Business travel	Travel and accommodation of employees/contractors	Included

Table 8: Overview of scope 3 emission sources for 2022

Confidential. Do not distribute.

XOJET Aviation - 2022 GHG Accounting Report

Category	Emission sources	Boundary
Employee commuting and teleworking	Employee travel between home and work and incremental emissions related to working from home	Included
Upstream leased assets	Operation of assets leased by the organisation (lessee) in the reporting year and not included in scope 1 or 2	Not material. Not included
Downstream transportation and distribution	Transportation and distribution of products not purchased by the reporting company	Not material. Not included
Processing of sold products	Processing of intermediate products sold by the organisation	Not material. Not included
Use of sold products	Emissions from the use of sold products (e.g. energy consumption during use)	Not material. Not included
End-of-life treatment of sold products	Waste disposal and treatment of sold products	Not material. Not included
Downstream leased assets	Operation of assets owned by the company (lessor) and leased to other entities, not included in scope 1 or 2	Not material. Not included
Franchises	Operation of franchises not included in scope 1 or 2	Not material. Not included
Investments	Operation of investments not included in scope 1 or 2	Not material. Not included

Data inventory and assumptions

Overall, the data inventory, emission factors, and assumptions are based on the 'GHG Protocol'. Unless otherwise specified, all emission values in this report are given in metric tonnes of carbon dioxide equivalent (tCO_2e).

Where activity data of the inventory was lacking, extrapolations and estimations were made. The complete overview of activity data, extrapolations, and estimations is summarised in Annex II. Whilst every effort has been made to calculate emissions as accurately as possible, GHG emissions calculations carry an inherent level of limitation and uncertainty. As standard practice and in line with the GHG Protocol, the choice of assumptions and emission factors followed a conservative approach.

The quality of activity data provided for a GHG inventory has a significant impact on the reliability and accuracy of emissions calculations. Primary activity data, such as the kWh of electricity purchased within a reporting year, yields to the highest quality calculations. Spend based data, which relies on a far greater number of assumptions, results in the least accurate.

Results

Based on the data provided by XOJET Aviation, the total GHG emissions for the year 2022 are estimated to be **212.009.41 tCO₂e**. Table's 9 and 10 below illustrate the key figures in terms of GHG emissions (in tCO_2e) and energy intensity (in gigajoules [GJ]) relevant to corporate sustainability reporting, in accordance with the GRI Standards. Please note that, due to rounding of numbers, the figures may not add up exactly to the total provided.

GRI Standard		Торіс	Quantity	Unit
	е	Energy consumption within the organisation	2,167,027.61	GJ
302-1	а	Total fuel consumption from non-renewable sources Aviation fuel	2,166,269.33 2,166,269.33	GJ GJ
	b	Total fuel consumption from renewable sources	0	GJ
	с	Total electricity consumption	758.28	GJ
305-1	а	Direct GHG emissions (scope 1)	154,888.43	tCO ₂ e
305-2	а	Location-based energy indirect GHG emissions (scope 2)	79.89	tCO ₂ e
505-2	b	Market-based energy indirect GHG emissions (scope 2)	79.89	tCO ₂ e
305-3	а	Other indirect GHG emissions (scope 3)	57,041.09	tCO ₂ e
302-4		GHG emissions intensity	1,254.49	tCO₂e/ employee

Table 9: Key figures according to the Global Reporting Initiative (GRI)

(Source: South Pole, based on XOJET Aviation, 2023)

Table 10: GHG emissions by scope and activity for 2022

Activity	Consumption	Unit	Emissions (tCO ₂ e)	Percentage of total (%)
Scope 1: direct GHG emissions				
Mobile combustion				
Aviation fuel	16,885,221.00	gal	154,888.26	73.06%
Fugitive emissions				
Refrigerants	1,433.00	m2	0.17	<0.01%
Scope 2: indirect GHG emissions from and cooling (market-based)	n purchased elect	ricity, heating		
Purchased Electricity				
Grid	210,633.00	kWh	79.89	0.04%
Scope 3: other indirect GHG emission	S			
Category 1: Purchased goods and serv	vices			
Flight consumables	250,014.00	USD	39.62	0.02%
Aircraft maintenance	36,674,877.00	USD	10,535.51	4.97%
Food and drink products	505.51	kg	0.77	<0.01%
	885.00	unit	0.44	<0.01%
IT services	1,085.00	Users	0.15	<0.01%
Paper	155.00	sheets	<0.01	<0.01%
Water supply	1,690.00	тЗ	0.25	<0.01%
Category 3: Fuel- and energy-related a				
Aviation fuel	16,885,221.00	gal	39,426.10	18.60%
Grid	210,633.00	kWh	3.60	<0.01%
Category 4: Upstream transportation	and distribution			
Air transportation	2,349,186.00	USD	4,542.23	2.14%
Category 5: Waste generated in opera	ations			
Commercial and industrial waste	0.01	ton	<0.01%	<0.01%
Paper/Cardboard	0.01	ton	<0.01%	<0.01%
Category 6: Business travel				
Air transportation				
Business	477,221.81	pkm	55.36	0.03%
Economy	12,905,450.56	pkm	1,509.94	0.71%
First	201,053.71	pkm	23.32	0.01%
Premium	283,896.47	pkm	31.23	0.01%

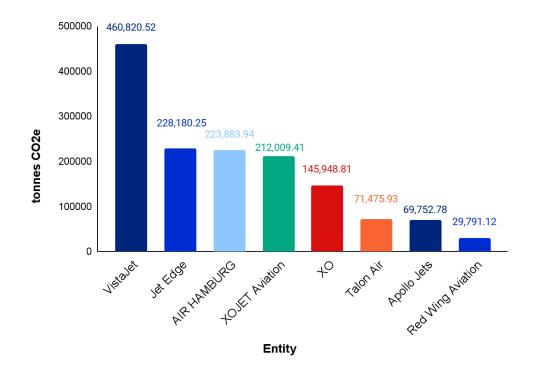
XOJET Aviation - 2022 GHG Accounting Report

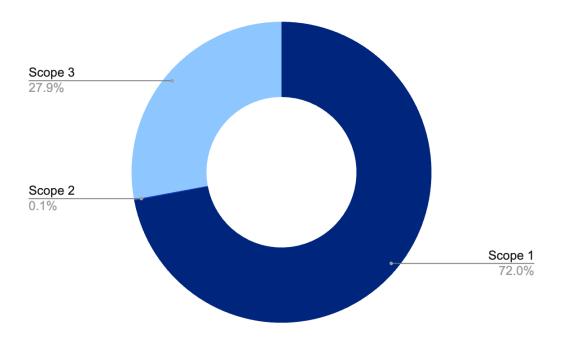
Activity	Consumption	Unit	Emissions (tCO ₂ e)	Percentage of total (%)
Ground transportation	1,767,642.00	USD	760.19	0.36%
Category 7: Employee commuting				
Car	392,124.34	km	86.00	0.04%
Other	91,028.86	km	18.39	0.01%
Public transport	4,817.13	pkm	0.40	0.01%
Teleworking	5,550.00	person days	7.45	
Walk	8,641.04	pkm	0	
Total GHG emissions (market-based)			212,009.41	-
Total GHG emissions (location-based)			212,009.41	100%

(Source: South Pole, based on XOJET Aviation, 2023)

Overall results - Vista

Figure 3 presents a breakdown of Vista's GHG emissions for each of its seven subsidiaries. In 2022, XOJET Aviation had the fourth highest GHG footprint of all 7 global entities, at 212,009.41 tCO2e, accounting for 14.7% of the overall global footprint.




Figure 3: Vista overall 2022 GHG emissions by business entity (Source: South Pole, based on Vista 2023)

Category-level results

Figure 4 presents a breakdown of XOJET Aviation's overall 2022 emissions by scope, and Figure 5 presents a breakdown of XOJET Aviation's overall 2022 emissions by GHG Protocol category. The vast majority of emissions, 73.06%, fall under Scope 1. This is largely driven by emissions associated with the burning of aviation fuel, which accounts for over 99% of Scope 1 emissions. The dominance of aviation fuel emissions in the 2022 footprint is highlighted in figure 6, which provides a comparison of aviation fuel emissions (from both mobile combustion and fuel and energy related activities) and all other sources of emissions.

Scope 3 accounts for 26.09% of overall emissions. This is predominantly due to the upstream emissions associated with the combustion of aviation fuel (categorised under sc3.1, fuel and energy related activities). Purchased goods and services is the second largest scope 3 category and accounts for 4.99% of the total footprint. Over 99% of emissions in this category relates to aircraft maintenance. A small proportion of emissions arose from employee business travel (1.12% of the total footprint), employee commuting (0.05% of the total footprint) and waste generated in operations (less than 0.01% of the total footprint).

Only 0.04% of emissions fall under scope 2. The singular source of scope 2 emissions in 2022 was purchased electricity consumption at Fort Lauderdale.

Figure 4: XOJET Aviation's 2022 GHG emissions by scope (Source: South Pole, based on XOJET Aviation, 2023)

GHG Protocol Category

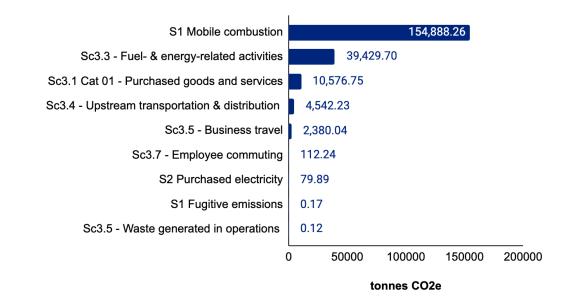
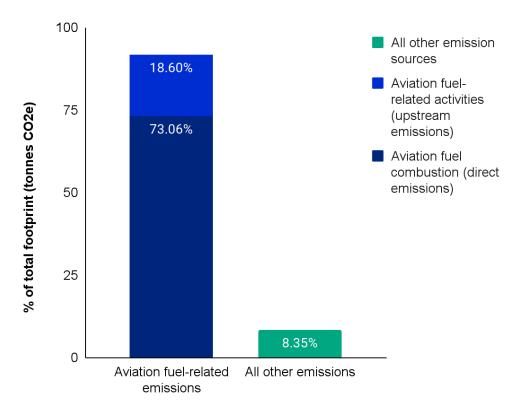
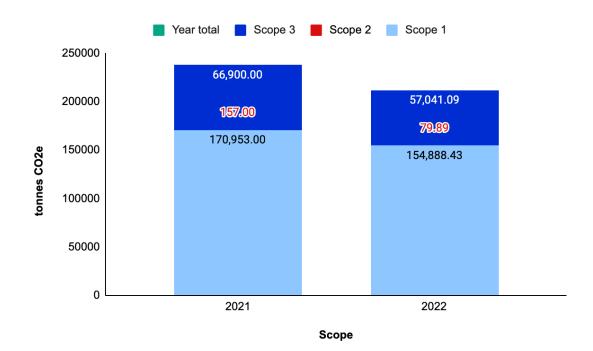



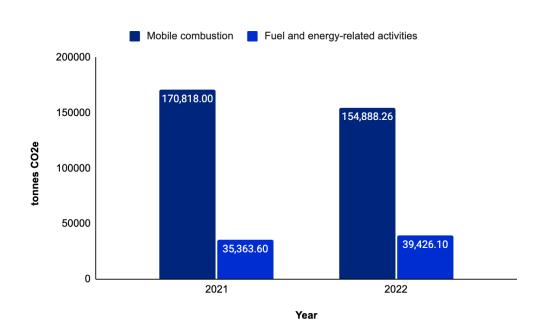
Figure 5: XOJET Aviation's 2022 GHG emissions by GHG Protocol category

(Source: South Pole, based on XOJET Aviation, 2023)



Source of emissions

Figure 6: A comparison of XOJET Aviation's aviation fuel emissions and all other emissions (Source: South Pole, based on XOJET Aviation, 2023)


Figure 7 presents a comparison of XOJET Aviation's GHG inventories for 2021 and 2022. The overall pattern of emissions is consistent across years, with scope 1 emissions (from aviation fuel) dominating the footprint, and very little occurring at the scope 2 level. XOJet Aviation's scope 1 and scope 3 aviation fuel emissions are illustrated in figure 8. Notably, fuel and energy related activity emissions are higher in 2022, despite mobile combustion emissions being higher in 2021. This is due to the emissions factor for 2022 increasing, as a part of a yearly process that is done to ensure emission factors accurately reflect emissions for that specific year.

From 2021 to 2022 emissions decreased by $26,000.59 \text{ tCO}_2\text{e}$. This was predominantly driven by a reduction in aviation fuel emissions (which was driven by a lower consumption of aviation fuel). Business travel emissions were also lower in 2022, by $8.563 \text{ tCO}_2\text{e}$. This is largely because the decision was made not to estimate business travel accommodation emissions in 2022. In 2022 no primary data was available, business travel accommodation only constituted a tiny part of the overall footprint in 2021, and it is not a requirement for science-based target (sbt) setting. Therefore, it was decided that as an immaterial emission source, undertaking potentially inaccurate estimations was not appropriate for this reporting period. That said, for completeness and transparency, it is important that XOJET Aviation seeks to collect primary data for the 2023 reporting period so that business travel accommodation emissions can be included in the footprint.

Figure 7: XOJET Aviation's GHG emissions for 2021 and 2022 by scope (Source: South Pole, based on XOJET Aviation, 2023)

XOJET Aviation - 2022 GHG Accounting Report

Figure 8: XOJET Aviation's emissions from aviation fuel from 2021-2022 (Source: South Pole, based on XOJET Aviation, 2023)

Conclusions

The annual measurement of GHG emissions is an essential first step that organisations must take on their journey to mitigating climate impact.

This report has presented a summary of XOJET Aviation's 2022 GHG footprint. As with previous years, the mobile combustion of aviation fuel is the primary driver of emissions. In 2022, emissions were lower than in 2021, reflecting a decrease in emissions from aviation fuel.

It is important that XOJET Aviation takes steps to continue improving the quality and accuracy of its GHG footprint, and implements measures to decarbonise its operations. Glasgow's COP26 and the 2021 IPCC report shone a spotlight on the critical need to achieve Net Zero emissions to keep global warming within the 1.5 degree limit. Private aviation is a highly emissions intensive industry, and XOJET Aviation has an important role to play in this transition.

In order to improve the quality of the GHG footprint, the following courses of action are recommended:

- Collect primary activity data: X0JET Aviation can improve data quality by collecting primary consumption data as activity volumes for all sources of emissions. For X0JET Aviation, this is particularly important for purchased goods and services and business travel accommodation. This allows for far more accurate and reliable GHG calculations than spend-based data, or estimations.
- Continue establishing formalised data collection procedures: Formalised data collection procedures, with internal quality controls, supplier communication, assigned roles, and

clear frameworks allow for a more streamlined data collection processes and limits the risk of missed data.

 Review data assumptions in Annex 2: Annex 2 in this document provides a more granular breakdown of key data assumptions. Treat these as priority emission sources to act on and improve data collection procedures for.

The following next steps are recommended for XOJET Aviation to continue on its decarbonisation journey.

- Prioritise investment in and uptake of Sustainable Aviation Fuel (SAF): The 2022 GHG footprint re-emphasised the role of aviation fuel in XOJET Aviation's footprint. Decarbonising fuel, for instance by switching to SAF, should be an absolute priority for XOJET Aviation to act on its climate ambitions.
- Set science based targets with SBTi: The Science Based Targets initiative drives ambitious climate action in the private sector by enabling companies to set science-based emissions targets. XOJET Aviation should demonstrate its commitment to sustainability in the aviation sector, and cement its position as a sector leader, by setting targets with SBTi.

Annex I

Emission factors sources

Table 11: Emission factors sources

Activity	Emission factor reference ⁴
Fuels (mobile combustion and fuel-related activities)	BEIS, 2022, SBTi Aviation Tool 2.0
Electricity and electricity related activities	eGRID, 2021
Refrigerants	ADEME 2022; BC V8.8
Business travel	BEIS, 2022; CEDA, 2022
Commuter travel	BEIS 2022
Teleworking	IEA energy indicators 2022; Anthesis, 2020; BEIS 2022; eGRID, 2021
Purchased goods and services (consumables, food and drink products, aircraft maintenance)	CEDA, 2022; Agribalyse, 2021; BEIS, 2022
IT services	Microsoft; 2022
Waste	BEIS, 2022

⁴ South Pole derives its emission factors from reliable and credible sources. South Pole is not responsible for inaccuracies in emission factors provided by third parties.

Annex II

Data assumptions and extrapolations

Category	Sub-Category	Relevant sites	Assumption
Fugitive emissions	Refrigerants	All (Fort Lauderdale)	Emissions from refrigerant leakage were estimated based on average sectoral consumption values and applied to XOJET Aviation sites based on total site area.
Purchased goods and services	Water supply	All (Fort Lauderdale)	Emissions from water supply were estimated based on figures for country/regional level water consumption and extrapolated based on site headcount.
Purchased goods and services	IT services	All (Fort Lauderdale)	Assumed one user per licence purchased
Fuel and energy related activities	Heating	All (Fort Lauderdale)	Upstream emissions from heating consumption were estimated based on average sectoral heat intensity metrics for office spaces. Sites with an all-year hot climate were excluded from estimations. Heating method was assumed to be natural gas.
Waste generated in operations	Solid waste	All (Fort Lauderdale)	Emissions from solid waste generation were estimated based on country/regional figures for waste consumption, waste type and waste disposal, and applied to each site based on the area (m2).
Business travel	All	All (Fort Lauderdale)	When applicable, Scope 3 emissions include Well-to-tank (WTT) emissions, which are those associated with the upstream production and distribution of the fuel and energy.
Business travel	Flights	All (Fort Lauderdale)	Flight emissions include a radiative forcing index (RFI) multiplier of 1.9, which accounts for the effects of non-CO2 emissions (contrails, water vapour, nitrogen oxides and soot). This is in line with BEIS recommendations, which are informed by wider industry research. Business travel consumption was provided as a
			combined figure for XOJET Aviation and XO. Emissions were apportioned based on headcount.
Employee commuting	Teleworking	All (Fort Lauderdale)	Teleworking emissions were estimated based on country and regional electricity and heating consumption for employees working from home, and applied to sites based on headcount.

Table 12: Data assumptions and extrapolations

XOJET Aviation - 2022 GHG Accounting Report

Employee . commuting	Travel	All (Fort Lauderdale)	Employee travel emissions were estimated based on country and regional travel data for modes of commuter transport and applied to sites based on headcount.
-------------------------	--------	-----------------------	--

